《数据思维》简介:
Google数据专家克里斯蒂娜(Christina Stathopoulos)领衔推荐。数据思维是数字时代人类听、说、读、写之后的第五种基本生存技能,数据认知素养之父乔丹·莫罗(Jordan Morrow)重磅作品 。
编辑推荐★★★★★
数据能力是数字化时代听、说、读、写之外的第五种能力,每个人都应该具备阅读、理解数据,以及用数据沟通的能力和技巧。正如微软全球副总裁洪小文所说:“人类进入数据经济时代,数据的重要性已毋庸置疑,数据成为与土地、劳动力、资本、技术等一样重要的新型生产要素,正在各个领域发挥着倍增器的作用。在数据经济时代,每个行业、每个领域的发展都无法脱离数据的赋能,数据正在给每一个领域带来巨大的变量。”
本书作者乔丹·莫罗被公认为全球数据素养之父,而这本书是他有关数据主题的处女座。本书不仅文笔上引人入胜,而且卓有成效地阐述了如何从高效收集数据、精确解读数据、科学做出决策等。
本书由南京大学耿修林教授领衔翻译,耿教授是国内统计学类的专家和权威,他在拿到这本书了非常高兴,半夜加班加点翻译,并写了一篇5000字的译者推荐。如果不是一本好书,恐怕是没有这么大的动力和这么高的兴趣。
这本书帮你从数据里提炼有效信息,并找到解决问题的答案。无论是从事社会管理、企业管理还是我们个人的日常生活,都需要利用数据或者在数据的基础上认识事物及做出决策。
正如译者耿修林老师说:“阅读数据、用数据开展工作,不仅仅是统计学家和数据科学家才能胜任的事,对大多数人只要我们有明确的意识,只要注意培养数据生活的习惯,同样是可以做得到”。在万物数化、万物互联的数字时代,这是一本普通人及专家学者都需要读的数据素养红宝书。
在数据科学界,乔丹·莫罗一向被戏称为数据思维的化身。《数据思维》是乔丹·莫罗有关这一主题的处女作,在这本书中,我们能看出乔丹·莫罗振臂高呼培养数据认知技能的热情。通过阅读本书,我们能更清晰地知晓如何借助数据制订策略,怎样才能做出更好的决策。总之,这是一本数据科学家、业务经理和相关人员的必备读物。
——克里斯蒂娜·斯塔索波洛斯(Christina Stathopoulos):Google数据专家,IE商学院兼职教授
当今时代乃至未来,要想在职场上混得风生水起,拥有良好的数据思维无疑是必备的素养之一。乔丹·莫罗先生的这本著作,提纲挈领而又力透纸背阐明了数据思维的方方面面。有志于快速提升数据思维品质的个人或团队,读读这本书会大有裨益的。
——伯纳德·马尔(Bernard Marr):世界知名未来学家,商业技术领域的学者型大咖和意见领袖
数据认知素养不是一门科学,也不是一种数学技能。数据认知素养是一种生活技能,是每个人都应该拥有的生存发展能力。
——柯克·伯恩(Kirk Borne):博士、博思艾伦咨询公司首席数据科学家、数据科学院士和高级顾问
乔丹·莫罗先生的这本书,是学习数据思维的必备读物。该书不仅阐明了什么是数据认知技能,而且还给我们指出了训练数据思维的具体途径。
——凯特·斯特拉奇尼(Kate Strachnyi):数说故事、DATAcated 学院和DATAcated会议创始人
该书介绍了非常有用且行之有效的技巧和策略,当你与数据打交道越多的时候,你就会感受到它们完全可以用在你的工作和生活之中。我很高兴把这本书推荐给任何想了解更多数据认知素养知识并期望提高他们的整体数据认识素养的人。
——凯文·汉尼根(Kevin Hanegan):Qlik首席学习官
本书特色★★★★★
1、你不用高深、专业的数学知识,也能帮你读懂每条数据背后的深层涵义。
2、全书从思辨式思考的角度谈论数据认知素养的知识体系,堪称数据素养和数据思维“哲学”层面的论述。
3、正如译者耿修林老师所说,你不要重回大学学习数理统计的知识,你也很好掌握数据的听、说、读、写技能。我们不是在培养统计师和数据科学家,而是在培养每一个人的数据认知技能和公民素养。
本书卖点★★★★★
1、Google数据专家克里斯蒂娜(Christina Stathopoulos)领衔推荐
2、数据认知素养之父乔丹·莫罗(Jordan Morrow)数据主题的重磅作品
3、南京大学商学院教授、博导耿修林亲笔翻译
4、数据思维是数字时代人类听、说、读、写之后的第五种基本生存技能,本书正是全面培养这一技能的素养提升书。
内容简介★★★★★
本书分为三部分:数据的重要性、数据认知素养、数据处理技能。
第一部分阐释了数据在我们日常生活和商业社会的重要性,数据正成为像石油、土地一样的重要的生产资料,而数字技能也正成为人才核心技能的重要组成部分。
第二部分探讨了什么是数据认知素养,也就是数据认知素养的内涵是什么。乔丹•莫罗认为,数据素养是一种能力,它包括:阅读数据资料和信息的能力,用数据开展工作或活动的能力,分析数据的能力,用数据进行表达、对话和沟通的能力。
第三部分是数据处理技能。乔丹•莫罗通过介绍如何阅读数据和信息、用数据开展工作、数据分析和数据沟通的点点滴滴,把数据分析的四个层次和数据认知素养的四个特征有机而紧密地结合了起来。
乔丹•莫罗还谈到商务智能、人工智能、机器学习和算法、嵌入式分析、云、边界分析、地理分析等,以及其与人们数据认知素养之间的关系,指出只要我们每个人带着好奇心、创新性思维、批判性意识,从最基本的数据及其分析运用开始,本着“娱乐化”的心态,找到自己感兴趣的话题不断实践,就一定能在实践中不断提升自身的数据认知素养。
在快速发展的第四次工业革命的世界中,并非每个人都需要成为数据科学家,但每个人都应该具备数据素养,具备阅读、分析和与数据沟通的能力。
正如译者耿修林老师所说,学习数据思维能够帮助你提高数据及其应用的意识,掌握一些数据处理和分析的基本方法,了解数据分析方法的适用条件,能够看懂数据处理结果。
《数据思维》摘录:
那些拥抱数据认知素养的个人和组织,大量的机会就在前方等你们。
《数据思维》目录:
致谢
译序 Translator's Preface
前言 Preface
01 数据的世界
数据:我们生活的世界 003
数据:技能差距 009
数据:为什么存在技能差距 011
数据:下一步是什么 017
本章小结 018
参考文献 019
02 数量解析的四个层次
数据与数量解析存在四个层次吗 022
数量解析四个层次的详解 024
数量解析四个层次的现实范例 038
本章小结 042
参考文献 043
03 数据认知素养
特征 1:阅读数据 048
特征 2:用数据开展工作 052
特征 3:分析数据 057
特征 4:数据沟通 061
本章小结 064
参考文献 066
04 数据认知素养“伞状”构成
数据与数量解析策略 070
数据认知素养与数据科学 072
数据认知素养与数据可视化 075
数据认知素养与高管团队 080
数据认知素养与文化 082
数据认知素养与数据质量 084
数据认知素养与数据治理 085
数据认知素养与数据道德和监管 087
本章小结 090
参考文献 092
05 数据语言的阅读和表达
阅读数据 99
数据流畅性 103
数据词典 106
数据阅读与数据流畅性策略 107
组织实例 108
本章小结 110
参考文献 111
06 数据认知素养与数量解析四个层次的结合
数据认知素养与描述性数量解析 115
数据认知素养与诊断性数量解析 120
数据认知素养与预测性数量解析 125
数据认知素养与指导性数量解析 130
数据认知素养与数量解析四个层次的整体拼图 134
本章小结 134
参考文献 136
07 数据认知素养的学习步骤
领导角色与数据认知素养学习 139
数据与数量解析策略和数据认知素养学习 142
数据认知素养学习框架与方法 144
数据认知素养四个特征的学习 150
数据思维文化的学习 155
数据认知素养学习的其他重要领域 158
本章小结 160
参考文献 162
08 数据认知素养的 3 个 C
数据认知素养的第一个 C:好奇心 165
数据认知素养的第二个 C:创造性 172
数据认知素养的第三个 C:批判性思维 179
本章小结 184
参考文献 185
09 数据知情决策
数据知情决策框架 190
步骤 1:提出问题 191
步骤 2:获取数据 194
步骤 3:分析数据 197
步骤 4:整合分析 199
步骤 5:给出决策 205
步骤 6:开展迭代 207
本章小结 209
参考文献 212
10 数据认知素养与数据与数量解析策略
数据驱动文化 215
商务智能 218
人工智能 221
机器学习与算法 224
大数据 226
嵌入式分析 228
云 231
边缘分析 231
地理分析 233
本章小结 234
参考文献 236
11 开启数据与数量解析旅程
COVID-19 与数据与数量解析 242
制作食谱 245
主动数量解析和被动数量解析 249
从基础开始 251
数据与数量解析的游戏化应用 253
找到能激发兴趣的事情 255
找出自身的原因 256
本章小结 258
参考文献 260
· · · · · ·