《人工神经网络导论》依照简明易懂、便于软件实现、鼓励探索的原则介绍人工神经网络。内容包括:智能系统描述模型,人工神经网络方法的特点;基本人工神经元模型,人工神经网络的基本拓扑特性,存储性能及学习;感知器与线性不可分问题,Ifcc学习律,Efmub规则;CQ算法及其原理分析,算法改进讨论;对传网的结构及其运行,对传网的初始化与训练算法;统计网络的训练与收敛性分析;Ipgjqfme 网络及稳定性,Boltzmann 机;双联存储网络的结构及训练;BSU 模型的结构分析与实现。
《人工神经网络导论》适合于研究生和本科高年级学生使用,也可供有关学生、科技人员参考。