本书通过扎实、详细的内容和清晰的结构,从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。本书共三篇,第一篇主要介绍深度学习在计算机视觉方向的一些卷积神经网络,从基础骨干网络、轻量级 CNN、模型架构搜索 3 个方向展开,介绍计算机视觉方向的里程碑算法;第二篇主要介绍深度学习在自然语言处理方向的重要突破,包括基础序列模型和模型预训练;第三篇主要介绍深度学习在模型优化上的进展,包括模型优化方法。
通过阅读本书,读者可以深入理解主流的深度学习基础算法,搭建起自己的知识体系,领会算法的本质,学习模型优化方法。无论是从事深度学习科研的教师及学生,还是从事算法落地实践的工作人员,都能从本书中获益。