《Computer Age Statistical Inference》简介:
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories – Bayesian, frequentist, Fisherian – individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
《Computer Age Statistical Inference》目录:
Part I. Classic Statistical Inference:
1. Algorithms and inference
2. Frequentist inference
3. Bayesian inference
4. Fisherian inference and maximum likelihood Estimation
5. Parametric models and exponential families
Part II. Early Computer-Age Methods:
6. Empirical Bayes
7. James–Stein estimation and ridge regression
8. Generalized linear models and regression trees
9. Survival analysis and the EM algorithm
10. The jackknife and the bootstrap
11. Bootstrap confidence intervals
12. Cross-validation and Cp estimates of prediction error
13. Objective Bayes inference and Markov chain Monte Carlo
14. Statistical inference and methodology in the postwar era
Part III. Twenty-First Century Topics:
15. Large-scale hypothesis testing and false discovery rates
16. Sparse modeling and the lasso
17. Random forests and boosting
18. Neural networks and deep learning
19. Support-vector machines and Kernel methods
20. Inference after nodel selection
21. Empirical Bayes estimation strategies
Epilogue
· · · · · ·