本书将从一个心理模型开始告诉读者计算机是如何阅读和解释语言的;之后,读者将了解如何训练基于Python的NLP机器来识别模式并从文本中提取信息。
在学习书中的例子时,读者将会扩展机器的知识,并将其应用到一系列挑战中。从构建一个能够根据文档的含义而不仅是关键词找到文档的搜 索引擎,再到训练一个聊天机器人,通过深度学习来回答问题和参与对话。
本书是介绍自然语言处理(NLP)和深度学习的实战书。NLP已成为深度学习的核心应用领域,而深度学习是NLP研究和应用中的必要工具。
本书分为3部分:第一部分介绍NLP基础,包括分词、TF-IDF向量化以及从词频向量到语义向量的转换;第二部分讲述深度学习,包含神经网络、词向量、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆(LSTM)网络、序列到序列建模和注意力机制等基本的深度学习模型和方法;第三部分介绍实战方面的内容,包括信息提取、问答系统、人机对话等真实世界系统的模型构建、性能挑战以及应对方法。
本书包括以下精彩内容:
●可扩展的自然语言处理流水线
● 基于规则的自然语言处理和基于数据的自然语言处理
● Keras、TensorFlow、gensim 和 scikit-learn 等工具的使用
本书面向中高级Python开发人员,兼具基础理论与编程实战,是现代NLP领域从业者的实用参考书。