《算法霸权》简介:
数据科学家凯西•奥尼尔认为,我们应该警惕不断渗透和深入我们生活的数学模型——它们的存在,很有可能威胁到我们的社会结构。
我们生活在一个依赖“算法”的时代,它对我们生活的影响越来越大,我们去哪里上学,我是不是应该贷款买车,我们应该花多少钱来买健康保险,这些都不是由人来决定的,而是由大数据模型来决定的。从理论上来说,这一模型应该让社会更加公平,每一个人的衡量标准都是一样的,偏见是不存在的。
但是,正如凯西•奥尼尔书里所揭示的那样,事实并非如此。我们今天所使用的这些数学模型是不透明的、未经调节的、极富争议的,有的甚至还是错误的。最糟糕的是,数学模型和大数据算法加剧了偏见与不公。例如,一个贫困学生想申请贷款交付学费,但是银行大数据算法根据他居住地的邮政编码判断将钱带给他存在风险,因此,拒绝给他提供贷款。他因此失去了受教育的机会,而这个机会可能帮助他摆脱贫困。大数据算法做的常常只是锦上添花的事儿,有时甚至是落井下石。
通过个案追踪,凯西•奥尼尔揭示了大数据是如何影响我们将来的,它不仅影响着个人,也影响着整个社会。这些数据评价着我们的老师、学生,筛选着我们的简历,审核着我们的贷款资格,衡量着员工的工作态度,监视着投票者,监控着我们的健康。
凯西•奥尼尔呼吁数据模型的创造者们要对算法负责,政策的制定者及执行者们在使用这一威力极大的“武器”前应该更加慎重。最后,作者指出,大数据几乎掌控着我们的生活,我们应该增加对它的了解。这本书相当的重要,它让我们有能力去问一些十分尖锐的问题,帮助我们了解事实的真相,提出需要改变的地方,探索更好的生活。
【编辑推荐】
案例丰富,内容兼具深度与话题性
未来20年,算法和大数据将席卷世界,接管我们的生活、社会和经济。我们生活中的很多方面都将落入自动化的数据分析之下。确保算法和大数据的公平性将是一项重大的任务,数据伦理的价值和意义将不断凸显出来。在作者看来,大数据犹如一个黑盒,规模、伤害和隐秘共存,她在书中引用了大量发生在美国当下的、基于大数据和算法的、改变个人生活的案例,并对影响这些城市生活经验的算法做了特别的观察和研究。作者认为,数据和算法的关系就像枪械和军火,数据没有价值观,是中立的,但来自人类行为的输入,难免隐含偏向,而算法创造的数据又对人类行为产生反作用,从而导致更多的不公。凯西在书中指出:算法模型一旦运转,执法行为就会增多,产生的新数据又会进一步证明加强执法的必要性。形象地说,就是哪里“前科”越多,哪里就越受算法“关照”,最终形成一个失真,甚至有害的回馈环路。这个观点也正是近来Facebook干预美国大选,国内很多专家学者热议“今日头条”推送模式的核心所在。
权威作者的深刻洞见
本书作者是哈佛大学的数学博士,研究方向是数论和代数几何,毕业之后在麻省理工学院执教,并在互联网公司做过很长时间的数据科学家,如今致力于教育和媒体行业的数据知识普及工作,因此,这并不是一本传统意义上唱衰大数据的书,相反,作者希望让更多的人通过了解大数据、了解算法,反思模型,以及通过政府和相关机构的合理监管,不断改善各类设计评价体系,让更多的人受益,维护社会的公平与民主。
【英文版获奖情况】
《纽约时报》(New York Times)年度书籍
《波士顿环球报》年度最佳图书
《连线》杂志年度必读书目之一
《财富》年度最受欢迎的书之一
《柯克斯评论》年度最佳作品
芝加哥公共图书馆年度最佳图书
《自然》网站年度最佳图书
《麻省理工科技评论》年度最佳科技图书
《算法霸权》摘录:
一如许多其他的数学杀伤性武器,问题的根源在于模型创建者选择了什么目标。这些模型追求的是效率和盈利的最大化,而不是正义或“团队”的福祉。当然,这是资本主义的本质。对企业来说,盈利有如氧气,是维持其生命力的必要条件。站在他们的角度,可以省钱而不省是极其愚蠢的,甚至是违反自然规律的。
《算法霸权》目录:
引文
第一章 盲点炸弹
不透明、规模化和毁灭性
第二章 操控与恐吓
弹震症患者的醒悟
第三章 恶意循环
排名模型的焦虑和杀伤性的对立面
第四章 数据经济
掠夺式广告的赢家
第五章 效率权衡与逻辑漏洞
大数据时代的正义
第六章 筛选
颅相学的偏见强化
第七章 反馈
辛普森悖论的噪声
第八章 间接损害
所有数据都是信用数据?
第九章 “一般人”公式
沉溺与歧视
第十章 正面的力量
锁定微目标的出发点
结束语
注释
索引
· · · · · ·